Identification and Characterisation of Shunt Metabolites from lsopenicillin N Synthase

Jack E. Baldwin," Robert M. Adlington, Mark Bradley, William J. Norris, Nicholas J. Turner, and Akira Yoshida

Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford OX? 3QY, U.K.

Incubation of $[(5S)-5-amin-5-carboxypentanoyl]$ -- $[3-13C]$ cysteinyl-p- $[15N,3-2H]$ valine with isopenicillin N synthase **(IPNS)** resulted in the observation of a 'shunt metabolite,' which we believe is formed from the collapse of an enzyme-bound monocyclic 6-lactam intermediate, and which from chemical studies has been shown not to be derived from the decomposition of a free thiol monocyclic 6-lactam.

During studies on the enzymic conversion of [(5S)-5-amino-5 carboxypentanoyl¹-L-[3-¹³C]cysteinyl-p-[¹⁵N, 3-²H] valine (1)⁺ $(L,L,D-A[3^{-13}C]C-[15N, 3^{-2}H]V)$ into isopenicillin N (2), under normal incubation conditions, $\frac{1}{x}$ we observed two signals in the ¹³C n.m.r. spectrum (broad-band-decoupled) at δ_c 89 (dioxane ref. δ_C 67.0) which were absent from spectra of identically treated incubations of the tripeptide $L, L, L-A[3-13C]C-[15N,$ 3-2H]V, from a boiled enzyme control, and present in only trace quantities from incubation of the tripeptide $L, L, D-A[3-1]$

t We have previously referred to **(SS)-5-amin0-5-carboxypentanoyl** as δ -(L- α -aminoadipoyl).

 13 C $|C$ - $[15N,3$ - 1 H $|V(3),\ddagger\rangle$ The intensity of this signal derived from (1) amounted to approximately 1-5% of that of the corresponding isopenicillin N signal.

Replacement of the 15N label with 14N in the tripeptide **(1)** afforded L,L,D-A[3 -¹³C]C-[3 -²H]V (4a) which, upon incubation, also gave rise to the two signals at δ_c 89. These results implied that the apparent 'doublet' at δ_C 89 was not due to 13C -15N coupling within an intact β -lactam ring, but instead suggested a $1:1$ ratio of isomers of a possible 'shunt metabolite,' the production of which was enhanced as a consequence of deuteriation in the C-3 position of valine in the tripeptides **(1)** and **(4).** Such a leakage from the enzyme's normal catalytic pathway can be rationalized by considering the role of a primary isotope effect operating as a result of substituting deuterium for hydrogen at the kinetically sensitive C-3 position of valine.3 This adversely affects the efficiency with which the enzyme isopenicillin N synthase (IPNS) processes the mono-cyclic β -lactam intermediate (5) through to the bicyclic penicillin nucleus *via* thiazolidine ring closure. Further evidence for this hypothesis came when the

3 In a separate study, Scott *et al.2* reported that incubation of the tripeptide **(3)** gave isopenicillin N 'without significant accumulation of any free intermediates.' Nor was the presence of any other product reported.

Subsequent n.m.r. experiments (broad-band and continuous wave) aimed at elucidating the nature of the moiety giving rise to the signals at δ_C 89 from (4a) indicated that one proton was directly bound to this carbon species; a DEPT experiment $(in D₂O)$ also indicated the absence of protons at the carbon atom α to this centre.

In order to investigate the origin of the 'shunt metabolites' the mercaptoazetidinone (7) was prepared *in situ⁴* [by liberation from the stable mercury salt **(8)** upon treatment with hydrogen sulphide], and allowed to decompose under **IPNS** incubation conditions (pH $7.8 + \text{cofactors}$) and at a variety of other pH values. At no time were significant signals observed in the δ_C 89 region of the ¹³C n.m.r. spectrum. The major decomposition product present was the enethiol **(9),** which was trapped as the S-alkylated derivative **(10)** and characterized.§ These results suggested that the thiol **(7)** or a product derived from **(7)** under the enzymic conditions was not the intermediate which, after being prematurely released from the enzyme, gave rise to the δ_c 89 signals.

By using data available⁵ and by synthesising model compounds the structural features of the proposed 'shunt metabolites' were identified as being consistent with those of the hydrated aldehyde **(lla). A** synthetic sample of the hydrated aldehyde **(llb)** was prepared by ozonolysis of the tripeptide

[§] Spectral data for (10) the S-alkylated derivative of (9): (N.m.r. dioxane ref. δ_c 67.00, sodium 3-trimethylsilyl[2,2,3,3⁻²H₄]propionate ref. δ_H 0.00): δ_H (500 MHz; D₂O) 0.84 and 0.89 (6H, 2 × d, J 7 Hz, 2 \times Me), 1.72–1.94 (4H, 2 \times m, CH₂CH₂CH₂CO), 1.97–2.12 (1H, m, CHMe₂), 2.46-2.51 (2H, m, CH₂CO), 3.61 (2H, s, SCH₂COO), 3.75 (1H, t, J 7 Hz, CH_a of aminocarboxypentanoyl), 4.17 (1H, d, J 6 Hz, CH_{α} of valinyl), and 7.45 (1H, s, CHSCH₂); δ_C (126 MHz; D₂O) 17.77 and 19.31 ($2 \times q$, $2 \times Me$), 21.51 (t, CH_2CH_2CO), 30.52 (t, CHCH₂), 31.44 (d, C_{β} of valinyl), 35.28 (t, CH₂CO), 38.61 (t, SCH₂CO₂H), 55.00 and 61.24 (2 \times d, 2 \times C_{α}), 123.65 (s, C=CH), 139.26 (d, C=CHS), and **164.42,174.95,175.93,176.51,** and 178.60 (5 \times s, 5 \times CO); m.s. m/z (positive argon fast atom bombardment) 442 (MNa^{+}) , 464 $(MNa₂⁺)$, and 486 $(MNa₃⁺)$.

Scheme 2

(12) $(MeOH/H₂O; -50°C)$ followed by work-up with dimethyl sulphide. The 13C n.m.r. spectra (broad-band and continuous wave) were consistent with those of the compound derived from enzymic sources, a facile enol(ate)-hydrate equilibrium in deuteriated solvent explaining the apparent loss of proton at the α -position. If Purification by h.p.l.c. of the crude products obtained from incubation of the tripeptides **(4a)** and **(4b)** on (a) reverse-phase octadecylsilane, mobile phase 20 mm ammonium hydrogen carbonate; or (b) μ -bondpack-NH₂, mobile phase 1:4 MeOH-aq. 0.05% HCO₂H, respectively, yielded fractions with retention times under both systems coincident with that of the authentic sample of the hydrate **(llb).** Purification of the crude products obtained from incubation of the tripeptide **(4a)** afforded a fast-running fraction, the 13C n.m.r. spectrum (broad-band decoupled) of which exhibited the δ_C 89 resonances. Reduction of this fraction (NaBH₄/H₂O) caused the loss of the δ_c 89 resonances, and gave two new resonances with δ_c 62, consistent with the L,D,D- and L,L,D-A[3-¹³C]serinyl-[3-²H]V tripeptides **(18). A** proton n.m.r. spectrum of the (partially) purified shunt metabolite [from (4b)] exhibited the resonances ass ciated with the hydrate proton $[-CH(OH)_2]$. These signals were enhanced by the addition of a synthetic sample of the hydrate $(11b)$ to the original solution. \parallel

A possible route whereby the monocyclic β -lactam intermediate **(5)** gives rise to the shunt metabolite **(11)** and yet

completes the stoicheiometric reduction of dioxygen to water in each catalytic cycle6 is shown in Scheme 1. **As** already discussed, the deuterium kinetic isotope effect slows carbonsulphur bond formation to give isopenicillin N (path a), permitting the competing fragmentation (path b) to the iminium ion **(14),** atomic sulphur, and iron(n). Quenching the ion **(14)** would lead to release of the hydroxy p-lactam **(13)** from the enzyme. It has already been shown7 that such 4-hydroxyazetidinones are unstable with respect to ring opening, forming aldehydes and their derived enols, analogous to those we have observed as the shunt metabolites **(11).** In this scheme the sulphur absorbs the oxidizing equivalent $(-2e)$ normally used for thiazolidine ring formation and hence the overall oxidation stoicheiometry on path b is the same as on path a.

More recently8 we have shown that the epimeric hydroxy y-lactams **(15),** which are homologues of **(13),** are the major products obtained after incubation of the L,L,D-A-homocysteinyl-V tripeptide **(16)** with IPNS. This result is readily interpreted by the mechanism in Scheme **1,** since the collapse of the corresponding monocyclic γ -lactam (19) to the fivemembered iminium ion **(20)** would be favoured on stereoelectronic grounds, *i.e.* a double bond endocyclic to a fivemembered ring *versus* a four-membered ring as in **(14)** (Scheme 2). Hence in this case this is the sole pathway observed, none of the corresponding bicyclic compound **(21)** being found.

In conclusion, we have observed the formation of a 'shunt'-type metabolite released from IPNS as it converts its natural substrate into isopenicillin N. Deuteriation at the C-3 position of valine in the tripeptide **(4)** enhances the 'shunt pathway' and has allowed isolation and characterization of the 'shunt metabolite' as the hydrated aldehyde **(lla).** This compound is not formed from the decomposition of the monocyclic free thiol β-lactam (7) under standard enzymic incubation conditions.[†]†

 \oint *Spectral data* for (11b): δ _H (500 MHz; D₂O; pH 4) 0.81-0.94 (6H, m, CHMe₂), 1.64-1.88 (4H, 2 \times m, CH₂CH₂CH₂CO), 2.07-2.12 (1H, m, CH_B of valinyl), 2.37-2.41 (2H, m, CH₂CO), 3.70 and 3.72 (1H, 2 \times t, CH_{α} of aminocarboxypentanoyl), 4.11 and 4.13 (1H, 2 \times d, CH_n of valinyl), and 5.25, 5.26 [1H, $2 \times s$, CH(OH)₂]; δ_c (126) MHz; D_2O), 17.56 (2 × q, Me), 18.91 and 18.96 (2 × q, Me), 21.24 and 21.33 (2 × t, CH₂CH₂CO), 30.09 and 30.14 (2 × d, C_B, of valinyl), 30.74 and 30.83 (2 \times t, CHCH₂CH₂), 35.13 (t, CH₂CO), 54.81 and 59.63 ($2 \times$ br d, $2 \times C_{\alpha}$ of aminocarboxypentanoyl and valinyl), 89.06 and 89.14 [2 × d, $CH(OH)_2$], and 169.50--177.00 (4 × s, 4 × CO); m/z [positive argon fast atom bombardment *ex.* $(CO_2H)_2/HOCH_2$ -CH(OH)CH,OH], 364 *(MH+,* hydrate), and 346 *(MH+* of enol/ aldehyde).

¹¹Compound **(17)** prepared in an analogous manner to the hydrate **(llb)** gave a 13C n.m.r. spectrum (broad-band decoupled) with one resonance at δ_C 89, as observed in the incubation of **(6)**.

tt A structure such as **(11)** may well be equivalent to the 'compound *Y'* which was derived from L,L,D-A[3-3H]C-[1-¹⁴C]V with loss of half the tritium label and also L,L,D-AC[3,4-³H,1-¹⁴C]V with retention of all the tritium label upon incubation with **IPNS,** which was erroneously⁴ identified as the free mercaptoazetidinone (7).⁹

We acknowledge the support and cooperation of Eli Lilly and *Co.* We thank the S.E.R.C. for a quota award (to M. **B.),** the Royal Society for a fellowship (to N. J. T.), and Dr. G. I. Dmitrienko for discussions.

Received, 28th April 1988; Corn. 8/0I678J

References

- C-P. Pang, B. Chakravarti, R. M. Adlington, H-H. Ting, R. L. White, G. S. Jayatilake, J. E. Baldwin, and E. P. Abraham, *Biochem.* J., 1984, **222,** 789; J. E. Baldwin, J. Gagnon, and H-H. Ting, *FEBS Lett.,* 1985, **188,** 253; J. E. Baldwin, S. J. Killin, A. J. Pratt, J. **D.** Sutherland, N. J. Turner, M. J. C. Crabbe, E. **P.** Abraham, and A. C. Willis, J. *Antibiot.,* 1987, **40,** 652.
- R. L. Baxter, C. J. McGregor, G. **A.** Thomson, and A. **I.** Scott, J. *Chem. SOC., Perkin Trans. 1,* 1985, 369.
- J. E. Baldwin, R. M. Adlington, S. **E.** Moroney, L. D. Field, and H-H. Ting, *J. Chem. SOC., Chem. Commun.,* 1984, 984; J. E. Baldwin and **E.** P. Abraham, *Nat. Prod. Rep.,* 1988, 132.
- 4 J. E. Baldwin, E. P. Abraham, R. M. Adlington, M. J. Crimmin, L. D. Field, G. S. Jayatilake, R. L. White, and J. J. Usher, *Tetrahedron,* 1984, **40,** 1907.
- M. P. Gamcsik, J. P. G. Malthouse, W. **U.** Primrose, N. E. Mackenzie, A. S. F. Boyd, R. **A.** Russell, and A. I. Scott, J. *Am. Chem. SOC.,* 1983, **105,** 6324; D. 0. Shah, K. Lai, and D. G. Gorenstein, *ibid.,* 1984, **106,** 4272.
- J. E. Baldwin, R. L. White, E-M. M. John, and E. P. Abraham, *Biochem.* J., 1982, 203, 791.
- $\overline{7}$ S. Kamata, S. Yamamoto, N. Haga, and W. Nagata, J. *Chem. SOC., Chem. Commun.,* 1979, 1106; (also personal communication).
- J. E. Baldwin, R. M. Adlington, M. Bradley, R. T. Freeman, S. Long-Fox, W. J. Norris, and C. J. Schofield, following communication.
- B. Meesschaert, P. Adriaens, and H. Eyssen, J. *Antibiot.,* 1980,33, 722.